THE CHARACTERIZATION OF NULL GENERALIZED HELICES IN 5-DIMENSIONAL LORENTZIAN SPACE

ESEN İYİGÜN

Department of Mathematics Art and Science Faculty Uludağ University 16059, Bursa Turkey e-mail: esen@uludag.edu.tr

Abstract

In this paper, we study null generalized helices by describing in view of harmonic curvatures to a null Frenet curve of osculating order 5 in 5-dimensional Lorentzian space by using the Frenet frame consisting of two null and three space-like vectors from [3].

1. Introduction

Let $x = (x_1, x_2, x_3, x_4, x_5)$ and $y = (y_1, y_2, y_3, y_4, y_5)$ be two nonzero vectors in Minkowski 5-space \mathbb{R}^5_1 . We denote \mathbb{R}^5_1 shortly by \mathbb{L}^5 . For $x, y \in \mathbb{L}^5$,

$$\langle x, y \rangle = -x_1 y_1 + \sum_{i=2}^5 x_i y_i,$$

Keywords and phrases: harmonic curvature, null curve, null helix.

Received September 28, 2012

© 2012 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 53C40, 53C42.

ESEN İYİGÜN

is called *Lorentzian inner product*. The couple $\{\mathbb{R}^5_1, \langle, \rangle\}$ is called *Lorentzian space* and briefly denoted by \mathbb{L}^5 . Then a vector v of \mathbb{L}^5 is called

- (i) time-like if $\langle v, v \rangle < 0$,
- (ii) space-like if $\langle v, v \rangle > 0$ or v = 0,
- (iii) null (or light-like) vector if $\langle v, v \rangle = 0, v \neq 0$.

An arbitrary curve $\alpha = \alpha(t)$ in \mathbb{L}^5 can be locally be space-like, time-like or null (light-like), if all of its velocity vectors $\alpha'(t)$ are, respectively, space-like, time-like or null [6].

2. Basic Definitions

Definition 1 [6]. On a semi-Riemannian manifold $M \subset \mathbb{L}^5$, there is a unique connection ∇ such that

$$[V, W] = \nabla_V W - \nabla_W V,$$

and

$$X\langle V, W \rangle = \langle \nabla_X V, W \rangle + \langle V, \nabla_X W \rangle,$$

for all X, V, $W \in \chi(\mathbb{L}^5)$. ∇ is called the *Levi-Civita connection* of \mathbb{L}^5 .

Definition 2. Let $\alpha : I \longrightarrow \mathbb{L}^5$ be a null curve in \mathbb{L}^5 . The curve α is called *Frenet curve of osculating order* 5, if its 5-th order derivatives $\alpha'(t), \alpha''(t), \alpha''(t), \alpha^{v}(t), \alpha^{v}(t), \alpha^{v}(t)$ are linearly independent and $\alpha'(t), \alpha''(t), \alpha''(t), \alpha''(t), \alpha^{v}(t), \alpha^{v}(t), \alpha^{v}(t)$ are no longer linearly independent for all $t \in I$. For each null Frenet curve of osculating order 5, one can associate an orthonormal 5-frame $\{T, N, W_1, W_2, W_3\}$ along α (such that $\alpha'(t) = T$) called the *Frenet frame* and functions $\{k_1, k_2, k_3, k_4, k_5\}$ called the *Frenet curvatures*. Thus from [3], the Frenet equations of a null curve in a 5-dimensional Lorentz manifold are written down as follows:

$$\begin{cases} \nabla_T T = hT + k_1 W_1, \\ \nabla_T N = -hN + k_2 W_1 + k_3 W_2, \\ \nabla_T W_1 = -k_2 T - k_1 N + k_4 W_2 + k_5 W_3, \\ \nabla_T W_2 = -k_3 T - k_4 W_1, \\ \nabla_T W_3 = -k_5 W_1, \end{cases}$$

where ∇ is the Levi-Civita connection of \mathbb{L}^5 ; h and $\{k_1, k_2, k_3, k_4, k_5\}$ are differential functions; T and N are null vectors; W_1 , W_2 , and W_3 are space-like vectors. In these equations by changing a suitable parameter t, we may take h = 0 and other equations stay unchanged. This parameter is called distinguished parameter of the curve [3]. That is,

$$\begin{cases} \nabla_T T = k_1 W_1, \\ \nabla_T N = k_2 W_1 + k_3 W_2, \\ \nabla_T W_1 = -k_2 T - k_1 N + k_4 W_2 + k_5 W_3, \\ \nabla_T W_2 = -k_5 W_1. \end{cases}$$
(1)

From [3] again, since T and N are null vectors, W_i , $1 \le i \le 3$, are space-like vectors, then we have

$$\begin{cases} \langle T, T \rangle = 0, \langle N, N \rangle = 0, \langle T, N \rangle = 1, \langle T, W_i \rangle = 0, \langle N, W_i \rangle = 0, \\ \langle W_i, W_j \rangle = \delta_{ij} = \begin{cases} 1, & i=j, \\ 0, & i\neq j, \end{cases} & \text{for } i, j = 1, 2, 3. \end{cases}$$
(2)

Definition 3. If a null curve $\alpha : I \longrightarrow \mathbb{L}^5$ is a null Frenet curve of osculating order 5 and Frenet curvatures $k_i, 1 \le i \le 5$ are nonzero constant, then α is called a *null W-curve of rank* 5.

ESEN İYİGÜN

3. Null Generalized Helices in \mathbb{L}^5

Definition 4 [8]. Assume that $\alpha \subset \mathbb{L}^5$ is a null generalized helix given by curvature functions k_1, k_2, k_3, k_4, k_5 . Then the harmonic curvatures of α in \mathbb{L}^5 write-down as follows:

$$H_{i} = \begin{cases} -\frac{k_{2}}{k_{1}}, & i = 1, \\ \frac{H_{1}'}{k_{3}}, & i = 2, \\ -\frac{k_{4}}{k_{5}}H_{2}, & i = 3. \end{cases}$$
(3)

Definition 5 [4]. Let α be a time-like curve in \mathbb{L}^5 with $\alpha'(s) = V_1$. $X \in \chi(\mathbb{L}^5)$ being a constant unit vector field, if

$$\langle V_1, X \rangle = \cosh \varphi$$
 (constant),

then α is called a *general helix* (inclined curves) in \mathbb{L}^5 , φ is called *slope angle*, and the space $Sp\{X\}$ is called *slope axis*.

Definition 6 [8]. A null curve $\alpha : I \longrightarrow \mathbb{L}^5$ is said to be a generalized helix, if there exist a nonzero unit constant vector X such that $\langle \alpha'(t), X \rangle \neq 0$, is constant. Then $Sp\{X\}$ is called *slope axis* and for the Frenet frame $\{T, N, W_1, W_2, W_3\}$, we have

$$\begin{cases} \langle W_1, X \rangle = 0, \\ \langle N, X \rangle = H_1 \langle T, X \rangle, \\ \langle W_i, X \rangle = H_i \langle T, X \rangle, \quad 2 \le i \le 5. \end{cases}$$
(4)

Now, the Equation (1) can be given in terms of harmonic curvatures as follows.

Theorem 1. Let α be a null Frenet curve of osculating order 5 in \mathbb{L}^5 . Then

$$\begin{cases} \nabla_T T = k_1 W_1, \\ \nabla_T N = -k_1 H_1 W_1 + \frac{H'_1}{H_2} W_2, \\ \nabla_T W_1 = k_1 H_1 T - k_1 N - \frac{H_3 k_5}{H_2} W_2 - \frac{H_2 k_4}{H_3} W_3, \\ \nabla_T W_2 = -\frac{H'_1}{H_2} T + \frac{H_3 k_5}{H_2} W_1, \\ \nabla_T W_3 = -\frac{H_2 k_4}{H_3} W_1, \end{cases}$$

where k_1 , k_4 , k_5 are Frenet curvatures of α ; H_1 , H_2 , H_3 are harmonic curvatures of α ; and ∇ is the Levi-Civita connection of \mathbb{L}^5 .

Proof. By using Equations (1) and (3), we obtain the proof of the theorem.

Corollary 2. If h = 0 and $k_1 = 0$ in $\nabla_T T = hT + k_1 W_1$, then α is a null geodesics in \mathbb{L}^5 .

Theorem 3. Let $\alpha : I \longrightarrow \mathbb{L}^5$ be a null curve in \mathbb{L}^5 . Then

$$\begin{cases} \langle \nabla_T T, W_1 \rangle = -\frac{k_2}{H_1}, \\ \langle \nabla_T T, W_2 \rangle = \langle \nabla_T T, W_3 \rangle = \langle \nabla_T N, W_3 \rangle = \langle \nabla_T W_1, W_1 \rangle = 0, \\ \langle \nabla_T W_2, W_2 \rangle = \langle \nabla_T W_2, W_3 \rangle = \langle \nabla_T W_3, W_2 \rangle = \langle \nabla_T W_3, W_3 \rangle = 0, \\ \langle \nabla_T N, W_1 \rangle = -k_1 H_1, \\ \langle \nabla_T N, W_2 \rangle = \frac{H'_1}{H_2}, \\ \langle \nabla_T W_1, W_2 \rangle = -\frac{H_3 k_5}{H_2}, \\ \langle \nabla_T W_1, W_3 \rangle = -\frac{H_2 k_4}{H_3}, \\ \langle \nabla_T W_2, W_1 \rangle = -\langle \nabla_T W_1, W_2 \rangle, \\ \langle \nabla_T W_3, W_1 \rangle = -\langle \nabla_T W_1, W_3 \rangle, \end{cases}$$

where T and N are null vectors; W_1 , W_2 , and W_3 are space-like vectors; $H_1, H_2, \text{ and } H_3$ are harmonic curvatures of $\alpha; \nabla$ is the Levi-Civita connection of \mathbb{L}^5 ; and k_1 , k_2 , k_4 , k_5 are Frenet curvatures of α .

Proof. By using Equations (1), (2), and (3), we obtain the proof of the theorem.

Theorem 4. Let $\alpha: I \longrightarrow \mathbb{L}^5$ be a null curve in \mathbb{L}^5 and X be a nonzero unit constant vector field (time-like or space-like) of \mathbb{L}^5 . Then

$$\begin{cases} (i) \langle \nabla_T T, X \rangle = \langle \nabla_T W_1, X \rangle = \langle \nabla_T W_3, X \rangle = 0, \\ (ii) \langle \nabla_T N, X \rangle = H'_1 \langle T, X \rangle, \\ (iii) \langle \nabla_T W_2, X \rangle = -\frac{H'_1}{H_2} \langle T, X \rangle, \end{cases}$$

where H_1 and H_2 are harmonic curvatures of α .

$$\begin{aligned} \mathbf{Proof.} (i) \ \langle \nabla_T T, X \rangle &= \langle k_1 W_1, X \rangle = k_1 \langle W_1, X \rangle = 0, (\langle W_1, X \rangle = 0), \\ \langle \nabla_T W_1, X \rangle &= \langle (-k_2 T - k_1 N + k_4 W_2 + k_5 W_3), X \rangle \\ &= -k_2 \langle T, X \rangle - k_1 \langle N, X \rangle + k_4 \langle W_2, X \rangle + k_5 \langle W_3, X \rangle \\ &= -k_2 \langle T, X \rangle - k_1 H_1 \langle T, X \rangle + k_4 \langle W_2, X \rangle + k_5 \langle W_3, X \rangle \\ &= -k_2 \langle T, X \rangle + k_2 \langle T, X \rangle + k_4 H_2 \langle T, X \rangle + k_5 H_3 \langle T, X \rangle \\ &= (k_4 H_2 - k_4 H_2) \langle T, X \rangle \\ &\Rightarrow \langle \nabla_T W_1, X \rangle = 0, \\ \langle \nabla_T W_3, X \rangle &= \langle -k_5 W_1, X \rangle = -k_5 \langle W_1, X \rangle = 0. \end{aligned}$$

$$\begin{aligned} (ii) \ \langle \nabla_T N, X \rangle &= \langle (k_2 W_1 + k_3 W_2), X \rangle \\ &= k_2 \langle W_1, X \rangle + k_3 \langle W_2, X \rangle \end{aligned}$$

n

$$= k_{3}H_{2}\langle T, X \rangle$$

$$\Rightarrow \langle \nabla_{T}N, X \rangle = H'_{1}\langle T, X \rangle.$$
(iii) $\langle \nabla_{T}W_{2}, X \rangle = \langle (-k_{3}T - k_{4}W_{1}), X \rangle$

$$= -k_{3}\langle T, X \rangle - k_{4}\langle W_{1}, X \rangle$$

$$= -k_{3}\langle T, X \rangle$$

$$\Rightarrow \langle \nabla_{T}W_{2}, X \rangle = -\frac{H'_{1}}{H_{2}}\langle T, X \rangle.$$

Corollary 5 [8]. α is a null helix in $\mathbb{L}^5 \Leftrightarrow 2H_1 + (H_2)^2 + (H_3)^2 = constant.$

Definition 7. A null curve $\alpha : I \longrightarrow \mathbb{L}^5$ is said to be a generalized helix, if there exist harmonic curvatures H_1 , H_2 , and H_3 such that

$$H_1' + H_2 H_2' + H_3 H_3' = 0.$$

Corollary 6. $H'_2 = -\frac{H'_1}{H_2}$ and $H'_3 = 0$.

Proof. From [8],

$$\langle W_i, X \rangle = H_i \langle T, X \rangle, \quad 2 \le i \le 5.$$

Thus

$$H_2' = \frac{\left\langle \nabla_T W_2, X \right\rangle}{\left\langle T, X \right\rangle} = \frac{-\frac{H_1'}{H_2} \left\langle T, X \right\rangle}{\left\langle T, X \right\rangle} = -\frac{H_1'}{H_2},$$

and

$$H'_3 = \frac{\left\langle \nabla_T W_3, X \right\rangle}{\left\langle T, X \right\rangle} = 0.$$

4. Examples

Example 1. Let $\alpha : I \longrightarrow \mathbb{L}^5$ be the null curve defined by

$$\alpha(t) = (\sinh t, \cosh t, 1, 0, -t), \quad t \in R,$$

and X = (0, 0, 0, 0, 1) a unit constant vector field in \mathbb{L}^5 . The tangent vector of α is

$$T = \alpha'(t) = (\cosh t, \sinh t, 0, 0, -1),$$

and $\langle T, T \rangle = 0$, so α is a null curve in \mathbb{L}^5 . Also, $\langle T, X \rangle = -1 = \text{constant}$. Therefore, the curve α is a null helix.

Example 2. Let $\alpha : I \longrightarrow \mathbb{L}^5$ be the null curve defined by

$$\alpha(t) = (t, 0, \sin t, \cos t, 1), \quad t \in R,$$

and X = (1, 0, 0, 0, 0) a unit constant vector field in \mathbb{L}^5 . The tangent vector of α is

$$T = \alpha'(t) = (1, 0, \cos t, -\sin t, 0),$$

and $\langle T, T \rangle = 0$, so α is a null curve in \mathbb{L}^5 . Also, $\langle T, X \rangle = -1 = \text{constant}$. Therefore, the curve α is a null helix. Moreover, the frame $\{T, N, W_1, W_2, W_3\}$ is a distinguished Frenet frame along α , where from (2),

$$N = \frac{1}{2} (-1, 0, \cos t, -\sin t, 0),$$
$$W_1 = (0, 0, \sin t, \cos t, 0),$$
$$W_2 = (0, 1, 0, 0, 0),$$
$$W_3 = (0, 0, 0, 0, 1).$$

Thus, from (4), we can find the following results:

$$H_1 = -\frac{1}{2}, \quad H_2 = H_3 = 0.$$

Example 3. Let

$$\begin{aligned} &\alpha(t) = \left(\sqrt{3} \sinh t, \sqrt{3} \cosh t, t, \cos t, \sin t\right), \quad t \in R, \\ &V_1 = \alpha'(t) = \left(\sqrt{3} \cosh t, \sqrt{3} \sinh t, 1, -\sin t, \cos t\right), \end{aligned}$$

where $\langle \alpha'(t), \alpha'(t) \rangle = -1$, which shows $\alpha(s)$ is time-like curve and X = (1, 0, 0, 0, 0) a unit constant vector field in \mathbb{L}^5 . Then,

$$\langle V_1, X \rangle = -\sqrt{3} \cosh t = \text{constant.}$$

Thus $\alpha(t)$ is a general helix in \mathbb{L}^5 .

Example 4. Let $\alpha : I \longrightarrow \mathbb{L}^5$ be the null curve defined by

$$\alpha(t) = \frac{1}{\sqrt{2}} \left(\sinh t, \cosh t, 0, \cos t, \sin t\right), \quad t \in \mathbb{R}.$$

The tangent vector of α is

$$T = \alpha'(t) = \frac{1}{\sqrt{2}} \left(\cosh t, \sinh t, 0, -\sin t, \cos t\right),$$

and $\langle T, T \rangle = 0$, so α is a null curve in \mathbb{L}^5 . Moreover,

$$\nabla_T T = \frac{1}{\sqrt{2}} (\sinh t, \cosh t, 0, -\cos t, -\sin t),$$

and

$$\langle \nabla_T T, \nabla_T T \rangle = 1 > 0,$$

 $\nabla_T T$ is a space-like vector field, so we can take $\nabla_T T = W_1$, which implies that h = 0 and $k_1 = 1$ in the first equation of (1). Thus, h = 0implies that t is the distinguished parameter for α and by Corollary 2, α is a non-null geodesic in \mathbb{L}^5 . By taking the derivative of W_1 with respect to T, we have ESEN İYİGÜN

$$\nabla_T W_1 = \frac{1}{\sqrt{2}} \left(\cosh t, \sinh t, 0, \sin t, -\cos t\right).$$

Choosing

$$W_2 = \frac{1}{\sqrt{2}} \left(\sinh t, \cosh t, 0, \cos t, \sin t \right),$$

and taking the derivative with respect to T, we have

$$\nabla_T W_2 = \frac{1}{\sqrt{2}} \left(\cosh t, \sinh t, 0, -\sin t, \cos t \right) = T.$$

This implies that $k_3 = -1$, $k_4 = 0$ from $\nabla_T W_2 = -k_3 T - k_4 W_1$ and we obtain

$$N = \frac{1}{\sqrt{2}} (-\cosh t, -\sinh t, 0, -\sin t, \cos t).$$

By taking the derivative of N with respect to T, we have

$$\nabla_T N = \frac{1}{\sqrt{2}} (-\sinh t, -\cosh t, 0, -\cos t, -\sin t) = -W_2$$

This implies that $k_2 = 0$ in the second equation of (1). Choosing

$$W_3 = \frac{1}{\sqrt{2}} \left(-\cosh t, -\sinh t, \, 0, \, \sin t, \, -\cos t \right),$$

and taking the derivative with respect to T, we have

$$\nabla_T W_3 = \frac{1}{\sqrt{2}} \left(-\sinh t, -\cosh t, 0, \cos t, \sin t \right) = -W_1.$$

This implies that $k_5 = 1$ in the fourth equation of (1). Thus, the harmonic curvatures of α are

$$H_1 = H_2 = H_3 = 0.$$

102

References

- [1] A. Altin, Harmonic curvatures of null curves and the null helix in R_1^{m+2} , International Mathematical Forum 2(23) (2007), 1111-1118.
- [2] R. Aslaner and A. I. Boran, On the geometry of null curves in the Minkowski 4-space, Turk. J. Math. 33 (2009), 265-272.
- [3] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht / Boston / London, 1996.
- [4] N. Ekmekçi, H. H. Hacisalihoglu and K. İlarslan, Harmonic curvatures in Lorentzian space, Bull. Malays. Math. Sci. Soc. (Second Series) 23 (2000), 173-179.
- [5] E. İyigün and K. Arslan, On harmonic curvatures of curves in Lorentzian *n*-space, Commun. Fac. Sci. Univ. Ank. Series A1 54(1) (2005), 29-34.
- [6] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [7] F. A. Yaliniz and H. H. Hacisalihoglu, Null generalized helices in L^3 and L^4 , 3 and 4-dimensional Lorentzian space, Mathematical and Computational Applications 10(1) (2005), 105-111.
- [8] F. A. Yaliniz and H. H. Hacisalihoglu, Null generalized helices in L^{m+2}, Bull. Malays. Math. Sci. Soc. (II) 30(1) (2007), 74-85.
- [9] F. A. Yaliniz, H. Kabadayi and H. H. Hacisalihoglu, AW(k) type curves for osculating 3rd order null Frenet curves, Hadronic Journal 30(1) (2007), 81-92.