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Abstract 

In this paper, we study null generalized helices by describing in view of 
harmonic curvatures to a null Frenet curve of osculating order 5 in                    
5-dimensional Lorentzian space by using the Frenet frame consisting of two  
null and three space-like vectors from [3]. 

1. Introduction 

Let ( )54321 ,,,, xxxxxx =  and ( )54321 ,,,, yyyyyy =  be two   

nonzero vectors in Minkowski 5-space .5
1R  We denote 5

1R  shortly by .5L  

For ,, 5L∈yx  
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is called Lorentzian inner product. The couple { },,5
1R  is called 

Lorentzian space and briefly denoted by .5L  Then a vector v of 5L  is 
called 

(i) time-like if ,0, <vv  

(ii) space-like if 0, >vv  or ,0=v  

(iii) null (or light-like) vector if .0,0, ≠= vvv  

An arbitrary curve ( )tα=α  in 5L  can be locally be space-like,     

time-like or null (light-like), if all of its velocity vectors ( )tα′  are, 

respectively, space-like, time-like or null [6]. 

2. Basic Definitions 

Definition 1 [6]. On a semi-Riemannian manifold ,5L⊂M  there is 
a unique connection ∇  such that 

[ ] ,, VWWV WV ∇−∇=  

and 

,,,, WVWVWVX XX ∇+∇=  

for all ( ) ∇χ∈ .,, 5LWVX  is called the Levi-Civita connection of .5L  

Definition 2. Let 5: L→−α I  be a null curve in .5L  The curve α  is 

called Frenet curve of osculating order 5, if its 5-th order derivatives 

( ) ( ) ( ) ( ) ( )ttttt viv ααα ′′′α ′′α′ ,,,,  are linearly independent and ( ) ( ),, tt α ′′α′  

( ) ( ) ( ) ( )tttt viviv αααα ′′′ ,,,  are no longer linearly independent for all .It ∈  

For each null Frenet curve of osculating order 5, one can associate an 
orthonormal 5-frame { }321 ,,,, WWWNT  along α  (such that ( ) =α′ t  T ) 

called the Frenet frame and functions { }54321 ,,,, kkkkk  called the 

Frenet curvatures. Thus from [3], the Frenet equations of a null curve in a 
5-dimensional Lorentz manifold are written down as follows: 
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where ∇  is the Levi-Civita connection of h;5L  and { }54321 ,,,, kkkkk  

are differential functions; T and N are null vectors; ,, 21 WW  and 3W  are 

space-like vectors. In these equations by changing a suitable parameter t, 
we may take 0=h  and other equations stay unchanged. This parameter 
is called distinguished parameter of the curve [3]. That is, 
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From [3] again, since T and N are null vectors, ,31, ≤≤ iWi  are     

space-like vectors, then we have 

{





==δ=

=====

=
≠ .3,2,1,for,

,0,,0,,1,,0,,0,

,,1
,,0 jiWW

WNWTNTNNTT

ji
jiijji

ii
 (2) 

Definition 3. If a null curve 5: L→−α I is a null Frenet curve of 

osculating order 5 and Frenet curvatures 51, ≤≤ iki  are nonzero 

constant, then α  is called a null W-curve of rank 5. 
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3. Null Generalized Helices in 5L  

Definition 4 [8]. Assume that 5L⊂α  is a null generalized helix 
given by curvature functions .,,,, 54321 kkkkk  Then the harmonic 

curvatures of α  in 5L  write-down as follows: 
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Definition 5 [4]. Let α  be a time-like curve in 5L  with ( ) .1Vs =α′  

( )5Lχ∈X  being a constant unit vector field, if 

ϕ= cosh,1 XV  (constant), 

then α  is called a general helix (inclined curves) in ϕ,5L  is called slope 

angle, and the space { }XSp  is called slope axis. 

Definition 6 [8]. A null curve 5: L→−α I  is said to be a generalized 

helix, if there exist a nonzero unit constant vector X such that 
( ) ,0, ≠α′ Xt  is constant. Then { }XSp  is called slope axis and for the 

Frenet frame { },,,,, 321 WWWNT  we have 
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Now, the Equation (1) can be given in terms of harmonic curvatures 
as follows. 
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Theorem 1. Let α  be a null Frenet curve of osculating order 5 in .5L  
Then 
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where 541 ,, kkk  are Frenet curvatures of ;α  321 ,, HHH  are harmonic 

curvatures of ∇α and;  is the Levi-Civita connection of .5L  

Proof. By using Equations (1) and (3), we obtain the proof of the theorem. 

 

Corollary 2. If 0=h  and 01 =k  in ,11WkhTTT +=∇  then α  is a 

null geodesics in .5L  

Theorem 3. Let 5: L→−α I  be a null curve in .5L  Then 
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where T and N are null vectors; ,, 21 WW  and 3W  are space-like vectors; 

,, 21 HH  and 3H  are harmonic curvatures of ∇α;  is the Levi-Civita 

connection of ;5L  and 5421 ,,, kkkk  are Frenet curvatures of .α  

Proof. By using Equations (1), (2), and (3), we obtain the proof of the 
theorem.  

Theorem 4. Let 5: L→−α I  be a null curve in 5L  and X be a     

nonzero unit constant vector field (time-like or space-like) of .5L  Then 

( )

( )

( )
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where 1H  and 2H  are harmonic curvatures of .α  

Proof. (i) ( ),0,,0,,, 11111 ====∇ XWXWkXWkXTT  

( ) XWkWkNkTkXWT ,, 3524121 ++−−=∇  

XWkXWkXNkXTk ,,,, 352412 ++−−=  

XWkXWkXTHkXTk ,,,, 3524112 ++−−=  

XTHkXTHkXTkXTk ,,,, 352422 +++−=  

( ) XTHkHk ,2424 −=  

,0,1 =∇⇒ XWT  

.0,,, 15153 =−=−=∇ XWkXWkXWT  

(ii) ( ) XWkWkXNT ,, 2312 +=∇  

XWkXWk ,, 2312 +=  

XWk ,23=  
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XTHk ,23=  

.,, 1 XTHXNT ′=∇⇒  

(iii) ( ) XWkTkXWT ,, 1432 −−=∇  

 XWkXTk ,, 143 −−=  

 XTk ,3−=  

  .,,
2
1

2 XTH
HXWT
′

−=∇⇒   

Corollary 5 [8]. α  is a null helix in ( ) ( ) =++⇔ 2
3

2
21

5 2 HHHL  

constant. 

Definition 7. A null curve 5: L→−α I  is said to be a generalized 

helix, if there exist harmonic curvatures ,, 21 HH  and 3H  such that 

.033221 =′+′+′ HHHHH  

Corollary 6. 
2
1

2 H
HH ′

−=′  and .03 =′H  

Proof. From [8], 

.52,,, ≤≤= iXTHXW ii  
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4. Examples 

Example 1. Let 5: L→−α I  be the null curve defined by 

( ) ( ) ,,,0,1,cosh,sinh Rttttt ∈−=α  

and ( )1,0,0,0,0=X  a unit constant vector field in .5L  The tangent 

vector of α  is 

( ) ( ),1,0,0,sinh,cosh −=α′= tttT  

and ,0, =TT  so α  is a null curve in .5L  Also, =−= 1, XT  constant. 

Therefore, the curve α  is a null helix. 

Example 2. Let 5: L→−α I  be the null curve defined by 

( ) ( ) ,,1,cos,sin,0, Rttttt ∈=α  

and ( )0,0,0,0,1=X  a unit constant vector field in .5L  The tangent 

vector of α  is 

( ) ( ),0,sin,cos,0,1 tttT −=α′=  

and ,0, =TT  so α  is a null curve in .5L  Also, =−= 1, XT  constant. 

Therefore, the curve α  is a null helix. Moreover, the frame 
{ }321 ,,,, WWWNT  is a distinguished Frenet frame along ,α  where from 

(2), 

 ( ),0,sin,cos,0,12
1 ttN −−=  

( ),0,cos,sin,0,01 ttW =  

( ),0,0,0,1,02 =W  

( ).1,0,0,0,03 =W  
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Thus, from (4), we can find the following results: 

.0,2
1

321 ==−= HHH  

Example 3. Let 

( ) ( ) ,,sin,cos,,cosh3,sinh3 Rttttttt ∈=α  

( ) ( ),cos,sin,1,sinh3,cosh31 tttttV −=α′=  

where ( ) ( ) ,1, −=α′α′ tt  which shows ( )sα  is time-like curve and 

( )0,0,0,0,1=X  a unit constant vector field in .5L  Then, 

=−= tXV cosh3,1  constant. 

Thus ( )tα  is a general helix in .5L  

Example 4. Let 5: L→−α I  be the null curve defined by 

( ) ( ) .,sin,cos,0,cosh,sinh
2

1 Rtttttt ∈=α  

The tangent vector of α  is 

( ) ( ),cos,sin,0,sinh,cosh
2

1 tttttT −=α′=  

and ,0, =TT  so α  is a null curve in .5L  Moreover, 

( ),sin,cos,0,cosh,sinh
2

1 ttttTT −−=∇  

and 

,01, >=∇∇ TT TT  

TT∇  is a space-like vector field, so we can take ,1WTT =∇  which 
implies that 0=h  and 11 =k  in the first equation of (1). Thus, 0=h  
implies that t is the distinguished parameter for α  and by Corollary 2,    

α  is a non-null geodesic in .5L  By taking the derivative of 1W  with 
respect to T, we have 
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( ).cos,sin,0,sinh,cosh
2

1
1 ttttWT −=∇  

Choosing 

( ),sin,cos,0,cosh,sinh
2

1
2 ttttW =  

and taking the derivative with respect to T, we have 

( ) .cos,sin,0,sinh,cosh
2

1
2 TttttWT =−=∇  

This implies that 0,1 43 =−= kk  from 1432 WkTkWT −−=∇  and we 

obtain 

( ).cos,sin,0,sinh,cosh
2

1 ttttN −−−=  

By taking the derivative of N with respect to T, we have 

( ) .sin,cos,0,cosh,sinh
2

1
2WttttNT −=−−−−=∇  

This implies that 02 =k  in the second equation of (1). Choosing 

( ),cos,sin,0,sinh,cosh
2

1
3 ttttW −−−=  

and taking the derivative with respect to T, we have 

( ) .sin,cos,0,cosh,sinh
2

1
13 WttttWT −=−−=∇  

This implies that 15 =k  in the fourth equation of (1). Thus, the harmonic 

curvatures of α  are 

.0321 === HHH  
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